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We consider a nonhomogeneous isotropic medium, whose shear modulus is a 
power of a linear binomial in the Cartesian coordinates while Poisson’s ratio 

is constant. The conditions are found under which the general solution of the 

plane and three-dimensional problems of the theory of elasticity can be ex- 
pressed in terms of harmonic functions. Also some special cases of the vari- 
ation of the shear modulus for a variable Poisson’s ratio are considered. The 
obtained results are used for solving the problem of the stress-strain state of 

a nonhomogeneous half-space under the action of concentrated forces, applied 

normally and tangentially to the boundary surface. 

1. The general solution of the three-dimensional problem of the theory of elasticity 

for a nonhomogeneous isotropic medium, wiiose shear modulus G and Poisson’s ratio Y 
are differentiable functions of the coordinate z, has the form [l] 

(1 .I) 

Here %, %,, U, are the components of the displacement vector, ‘i’ is the three-di- 

mensional Laplace operator and L, _N are functions satisfying the equations 

(1.“) 

(I .;I) 

The general solution of the axisymmetric problem is expressed in terms of the function 

L. We can arrive at the two-dimensional problem of the theory of elasticity of nonho- 
mogeneous media if we put N -z 0 and the function L does not depend on the coor- 

dinates L or y. In addition, v has to be replaced by v*, where v* 7 v in the case 

of the plane strain and v* = v/(1 + v) in the case of the plane state of stress. 

Thus, the solving of any problem of the theory of elasticity reduces to the finding, 
from Eqs. (I. 2) and (1.3). of the functions L and N satisfying the given boundary con- 
ditions. In general, in the solving of these equations we encounter great difficulties 
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which reduce to a significant degree the practical value of the above given results. The 

form~ation and the solving of concrete problems is substantially simplified only if, in 

expressing the general solution, we succeed to use classes of functions which, relatively. 
have been well investigated . We now examine the possibility of representing the 

general solution of Eqs. (1.2) and (1.3) in terms of harmonic functions in the case when 

the shear modulus varies according to a power relation of the form 

G (z) = G, (1 + cz)” 

First we consider Eq. (1.2). which we write in a more compact form 

(1 A) 

T’2 ( ~q-((t2+)L $(+=o (1.5) 

9, We assume that Poisson’s ratio is an arbitrary function of the coordinate 2, while 

the shear modulus 
G (z) = G,/(l _t cz) (2.1) 

Then Eq, (1.5) can be simplified and its general solution can be obtained from the Pois- 

son equation 
A2L = x (2) ‘~0, x (2) = G I (1 - v) (2.2) 

Here and in the sequel, Cpj (j = 0, 1. 2, . . .) are arbitrary harmonic functions. 

We consider the harmonic function (~2, related to c&, by 

‘p. = 2dqzfdz 
By saaighforward verification we can see that a particular solution of Eq, (2.2) can be 
taken in the form 

L* = f X ft) 1% (z, Y, 2) - ‘92 (3, y, 2t - z)] dt (2.3) 
lo 

Hence it follows that 
L = q$+ I,* (2.4) 

Thus, in the case when the shear modulus varies according to (2. l), while Poisson’s ratio 

v = Y (z) , the general solution of Eq. (1.5) can be expressed in terms of two arbitrary 

harmonic functions. 

Hence, in particular, it follows that two harmonic functions are sufficient for the solu- 

tion of any plane or axisymmetric problem if the body under consideration possesses 

the indicated nonhomogeneity. 

3, We assume that in Eq. (1.5) we have v = con&, while the shear modulus is a 

power function of the coordinate z of the form (1.4). 
We will seek L in the form 

L = (1 + czy s Uk (1 + cqk 9& (3.1) 
k=o 

where gk (FE = 0, 1, 2 . . .) are arbitrary harmonic functions connected through the 
relations 

q& = wk+l Idz (3.2) 

Substituting L into Eq. (1.5) and collecting similar terms, we equate to zero the coef- 
ficients of like powers of 1 + IX. From the obtained algebraic system it follows that 
the formal solutions of (1.5) are two series 

L, = (1 q- czp i up (1 + czp q)(k) (3.3) 
k=o 
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L, = (1 + CZ)?’ jj a?) (1 + czy qp 
k=o 

P, - ‘!z (b + 1 -t E), pp = ‘12 (b + 1 - E) 

g - V(b _I- 1) 11 - vb/(! - v)v)I 

$1 o ‘=f (4-22k+‘)t-((b+2)2cail~l 
8k i (11 , 

RiJ 

(3.4) 

(3.5) 
ap) = (F, .:- 2k - 1)s .- (b .I- 2)’ (2) 8k wi-1 , “(2) 

n 
.__ 1 

The indices 1 and 2 for the harmonic functions gk have been introduced in order to 

emphasize that these functions are, in general, distinct, IR certain particular cases of 

nonhomogenei~ of the elastic medium, the series (3.3) and (3.4) terminate and then 
the general solution of Eq. (1.5) can be expressed in the form of a finite sum. To find 
these cases, we set 

(1) an+, ‘-7 &\t _- 0 (3.6) 

i. e. the first series breaks at the term with index n, while the second one at the term 
with index m. From the expressions (3.5) it follows that equality (3.6) is possible only 
under the condition 

(5 _ 2n _ 1)s - (/J f 2)” -2 0, (E i- 2n .j- 1)” - (b -t 212 = Q (3.7) 

Hence, taking into account that E > 0 and 0 < v < 1/2, we find 

b=n+m.-f, E=n-m, yz n+m;n;-m)2 (X5) 

and for r’t and m we obtain the system of inequalities 

n>m>i, n~m$1~,[1+~8m+ 1] (3.9) 

The function L can be represented in the form 

k=n 

,(I, (?z - /IL - ‘Ik + I)’ - (IL A- r/a ‘. 1)’ (1) 
h 

__ 

Xk 
-cak._, , &) = I 0 (3.20) 

Where 1f8, = $I,,{*) and vz = I&,~‘~). Thus, for special cases of nonhomogeneity of the 

Tabie i, 

-r - 
elastic medium, defined by the relations (3_8j, the general 
solution of (1.5) can be represented in terms of two harmo- 
nic functions (PI and rp2 in the form (3.10). 

In the table we have indicated for all possible values of 
b < IO the corresponding values of the quantities m, n and 
of the Poisson ratio v, computed with the aid of the formu- 

las (3.8). (3.9). Because of its small practical value, we have 
not included in it the case m ;= IZ, since then I;, .- 1,~. 

4. We consider now Ea(l.3) with G (z) given by a rela- 
tion of the form (1.4). Poisson’s ratio does not occur in the 
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equation, therefore we will consider it as an arbitrary function of the coordinate z. 

By analogy with the previous case we seek the function N in the form 
a0 

N = (I+ cq 2 cl& (1 + cz)-k$k 
k=O 

From Eq. (1.3) we obtain 

b 
7 = --( 

2 
d 

L 
= (2k - II2 - (b- ‘1’ cdk_l, 

Sk 
d, = 1 

Consequently, the series (4.1) breaks at the term <of index s if 

(2s + 1)s - (b - 1)a = 0 

This equality is possible onhi if 

b = 2 (s + 1) or b == -2s (S = 0, 1, 2...) 

The function N takes the form 
kz.9 

,$’ 5:: (1 + CZ)-~” 2 d, (1 + CZ)-~ ‘2 
,i-0 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

Here (pa = I&. 
Thus, the general solution of Eq. (1.3) can be expressed in terms of an arbitrary har- 

monic function (ps, if the exponent b in the formula (1.4) can be represented in the 

form (4.4). 
We consider the special case of nonhomogeneity of the elastic medium when the 

shear modulus is constant while Poisson’s ratio is v = y (z). To this end, in the formu- 

las (2.4) and (4.5) we set G = const. As a result we obtain that the general solution 

of the three-dimensional problem can be expressed in terms of three arbitrary harmonic 

functions, since z 

L = ‘PI+ \ [cp2 (3, Y, 4 - ‘~2 (z, Y, ~3 - z)] $& , N = ‘Pi . (4.6) 
to 

The obtained results allow us to solve a series of new problems in the theory of elas- 
ticity of nonhomogeneous isotropic media. We consider two of these problems. 

6. A concentrated force P, applied at the origin to a nonhomogeneous half-space 
Z > 0, acts in the positive direction of the z-axis. We have to determine the defor- 

mation of the half-space if Poisson’s ratio is constant while the shear modulus varies 
with the depth according to a power function (1.4) for those values of the exponent b 

which are allowed by the relations (3.8) and (4.4). 

In p, 31. devoted to similar problems, the state of stress of the half-space z> 0 with 
modulus E (z) = E,zk under the action of a concentrated force normal to the surface, 
was investigated. The physical nonrealityofsuch a medium is obvious, since the elasti- 

city modulus of the half-space at the boundary surface is equal to zero. This circum- 
stance implies. in particular, a limitation on the possible values of the exponent k. Thus, 
for example, the formulation of the problem on the action of a distributed load makes 

sense only for 0 < k < 1. Therefore it presents interest to investigate the state of stress 
and strain of a half-space, whose shear modulus is a function of the coordinate z of the 
from (1.4). 
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For definiteness. we will consider b = 2. For other values of the exponent b the 
method of solution is similar. From Table 1 and the equalities (4.4) we find 

v = Ilq, m = 1, n = 2, s = 0 

Hence. according to (3.10) and (4.5). we have 

We 

nit 
We 

391 
i=(1+cz)2~-2c(1+cz)~+ 2 3 c%#, + (1 + cz) ag - + ccp, (5.1) 

N= ‘Pa / (1 + cz) (5.2) 

take (p3 = 0. Then the solution of the problem reduces to the finding of the harmo- 

functions rpl and (r2 in the domain z > 0 , satisfying the given boundary conditions. 

seek the functions (F, and c+$in the form 

($I = y y$ Pf10 (ar) da (r = I/m+ 

b 

(5.3) 

Here Jo (ar) is the zero order Bessel function of the first kind. The arbitrary functions 

of the parameter a : fi and B , must be chosen so that the boundary conditions be 

satisfied. This means that the ncwmal and shear stresses at the surface of the half-space 

must be equal to: 
Q, I_) = - f (r), r:x Iz_0 - 0. T,U IzzO = (J (5.4) 

Here f (r) is the applied load, which, in the case of a concentrated force P, acting on 

the half-space, can be represented in the form [41 
;u 

I (r) = & 1 aJo (ar) da 
0 

Substituting the expressions (5.3) into (5.1). we have 

(ctr) {Ah (1 + cz) [h (1 + cz) A- 11 $ 

(5.5) 

(3.6) 

+ B [AZ (1 + CZ)~ + 3A (1 + cz) +3]}da A”+ 

Inserting the function L into the formulas (1. I), we obtain the components of the dis- 
placement vector and through them, the components of the stress tensor. Substituting 

the expressions for the determination of the stresses into (5.4). we obtain for the functions 
A and B a system of algebraic equations, from where we find 

In the final form the formulas for the displacements are 

(5.7) 
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up=0 (p=cr, c=cz, @=arctgy/z) 

Here z&, ug, U, are the components of the displacement vector in the cylindrical sys- 
tem of coordinates. 

We decompose the rational expressions from the integrands into simple fractions. If 

we now make use of the formulas [5] 

Q, 

c 
J,oLp)dh = ;. (Rep>-4 P>O) (5.9) 

;, 

OD I” c . mT Jp (J-P) dh - & T-p (~1, T-p (YP) = H-p W - b4w) 

(- l/z < Rep < */2, P > 0, I an3 7 i < n) 

where EL,, (vp) is Struve’s function and N_, (yp) is Neumann’s function, then for 

c = 0 we obtain the expressions for the determination of the displacements of the sur- 
face points of the nonhomogeneous half-space 

u, Jz__o = - &, [(3 + 2 r/‘%Tl (TIP) + (3 - 2 1/j) TI 92~) - $1 (5 lo) 

&0=&{ 1 - +P [('I, + V?I To(Trp) + (‘/i- 1/q To (~2~11) 

u,=o, r1=‘/2(3+1/:3), Ta='/2(3- V/5) 

Hence it follows that for p < 1 

I 

-P 
Urr=0z=:8nCor 

up = 0, (5.11) 

Thus, near the point of application of the force, the displacements of a nonhomoge- 

neous half-space coincide with the displacements of an identically loaded homogeneous 

half-space having the same Poisson’s ratio and with shear modulus equal to G,.However, 
as we go farther from the point of application of the force, the displacements die out 

rapidly. The character of the damping can be easily shown, if we make use of the asymp- 

totic expansion for the function 1; (p) [6] 

TP@) = (P I2V 1.3.(2p-1)(2p-3) 

VZp (Ir + l/a) 
1 + 1*(2p - 1) 

Pa + 
P’ 

+... (5.12) 

Thus, for example, from the expressions (5.10) and (5.12) it follows that the vertical 
displacements decrease with a’velocity directly proportional to the cube of the distance 

from the point of application of the force. 

In Fig. 1 we have represented the vertical displacements of the points at the surface 

of the half-space for different values of the coefficient c. Along the abscissa axis we 
have represented the quantity r and along the ‘ordinates, the quantity j+’ = u,G,, I P. 
The case c = 0 corresponds to the homogeneous half-space. 

In the expressions (5.8) we now set r = 0, and we expand the rational function from 
the integrand into simple fractions, making use of the formula [5] 

cs 

c 
6 

&dA.= -&Ei(--c) (5.13) 
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where Ei (-yc) is the exponential integral function. As a result we obtain the formu- 

las for the displacement of the points of the ~nhomogeneous half-space lying on the 

line of action of the force 

Fig. 1 

6. \ce ass~mle now that tile concentrated 
force P. applied to the i:alf-space 2 > 0 
at the origin, acts In the positive direction 

of the L.-axis tangent to the boundary sur- 

face. As in the previous problem, we will 

consider that the shear modulus varies with 

depth according to a power relation of the 
form (1.4) for b = 2, while Poisson’s ratio 
2’ T- ‘/ 4. In this case the functions L and 

9 are obtained from the expressions (5.1) 

and (5. 2). 

Thus. the determination 9f the state of 
stress and strain of a nonhomogeneous half- 

space reduces to the finding of three har- 

monic functions ‘pt, rp2 and (03, which 
allow us to satisfy the boundary conditions 

where f (r) is the applied load, represented in the form (5.5). We seek the harmonic 
functions in the form 

Al_ i) DcI-I-cz 
dt c ;t FJO( ar e-ax du = cos p ( 7 J1 (at) e-ar da ) 

O” CI + cz 

6 

UC (p2-g\ Oa Cl - Cn -!Zdk Jo (ar) e+ da = cos p \ 
(6.2) 

6 
c%~ I J, (or) e-az dh 

; (a*) 

cm ca 
co 

v3=-$ . I) 

-g Jo (ar) e-az da = ST s C&J, (ar) e-az da 
0 0 

Here C,, Cz, C, are functions of the parameter a, subject to determination from the 

bounoary condltlom. Inserting the expressions (6.2) into (5.1) and (5.2), we have 
US 

L = cosp 
s ~J,(arf{C1S(1~1;)Ih.(l+5)+11+CaIh2(1+i)2+ 
0 

3h(l + 5) + :S]}da 
m 

N ~___ sin p c c(l-‘5) . 
C3e-a2.1, (ar) da 

9 

(6.3) 
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Hence, making use of the formulas (1.1) and of the relations of the theory of elasticity, 
it is easy to obtain the components of the displacement vector and of the stress tensor. 

The boundary conditions (6.1) allow us to form a system of three algebraic equations 

for the functions C,, Cs and cs, which gives 

c Pi 
3=2nCo1+l 

(6.4) 

Finally, we present the expressions for the determination of the displacements of the 
points of rhe nonhomogeneous half-space 

In the particular case when c -+ 0, we arrive at the well-known solution of Cerruti [7] 

for a concentrated force applied tangentially to the boundary surface of a homogeneous 

half-space. The formulas for the determination of the displacements of the points af the 
surface of a nonhomogeneous half-space can be obtained from (6.5) if we expand the 

rational expressions from the integrands into simple functions and we make use of the 
formulas (5.9). As a result we obtain 

ur lrlo = c*(1_+ [; P (To (TlP) + To (Yd’)) - TJl (YIP) - 

TIT1 (rd4 + 4Tl @)I} (6.6) 
3cPsin p 

ug Ir4J = - 8ncop I 

1 

u* IL4 = cs 

- $ [rJ’1 (T,P) + TIT, (Y,P) - $7’1 (r))l - $ ~7’0 (P)} 

[ ($ + r’“) k, (?.lP) + (+ - 1/3) T, (Y2P) - +j 
,’ 

It is easy to obtain the formulas for the determination of the displacements of the pants 
of the half-space lying on the z-axis, if we make use of the integral (5. I c)). 
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Formulations are presented of a number of optimization problems of the the- 
ory of longitudinal vibrations of rectilinear rods of constant cross section. 
Results of their solution, obtained by using the necessary condition of station- 
arity of the functional constructed in [l] and the necessary Weientrass con- 
dition of a strong minimum of the functional established below, are described. 

Special attention is paid to optimization problems in which there are discon- 
tinuities in the Lagrange multipliers on the characteristic lines on equations 
of hyperbolic type by which longitudinal vibrations are described. 

1. Formulation of the problem. Let us consider the following secondorder 

partial differential equation defined in the domain Q (0 < z < T, 0 < y < I) : 

z xx - W'LZ,, = u1(5, y) (1.1) 

If it describes the longitudinal vibrations of a rod, then z = z (z, I/J is the longitud- 
inal displacement of a rod section, and ur (z, y) is the longitudinal load intensity dis- 
tributed along the rod length. Let us consider the load constrained by the inequality 


